The Zoo of Neutron Stars in Supernova Remnants (SNR): An X-ray View

Neutron Stars Diversity

SNR connection

Birth and evolution (part I) SN Progenitors (part II)

IAU Honolulu Division D, Aug (2015)

Supernova Remnants The Big Picture

- Our Galaxy's dynamics and magnetism (ENERGY)
 - The non-thermal Universe (see talk by Emma de Ona Wilhelmi)
 - Galactic B-field
 (see talk by Jennifer West)

Supernova Remnants The Big Picture

- Our Galaxy's dynamics and magnetism (ENERGY)
 - The non-thermal Universe
- Nucleosynthesis (MATTER)
 —the thermal Universe
 - SN progenitors (this talk)
 - See also talk by Paolo Mazzali

IAU Honolulu Division D, Aug (2015)

Supernova Remnants Our Cosmic Connection to the Elements

Supernova Remnants The Big Picture

Our Galaxy's dynamics and magnetism

- Nucleosynthesis (MATTER)
 —the thermal Universe
- Nearby Laboratories for Extreme Physics
 - Link to GRBs (see N. Gehrels' and P. Mazzali's talks)
 - Neutron Stars (this talk; see also GianLuca Israel's talk)

Their magnetic fields: formation and evolution through SNR studies!

Neutron Stars: The Big Picture

Pulsars' Intrinsic Properties Spin (P), Spin down (Pdot)=> **Magnetic Field (B) and "Age"**

$$E = \frac{d}{dt} \left(\frac{1}{2} I \Omega^2 \right) = I \cdot \Omega \cdot \dot{\Omega}$$

$$= \frac{2}{3c^3} |m|^2 \Omega^4 \sin^2 \alpha$$
Surface dipole magnetic field
$$E = \sqrt{\frac{3c^3}{8\pi^2} \frac{I}{R^6 \sin^2 \alpha}} P\dot{P} = 3.2 \cdot 10^{19} \sqrt{P\dot{P}} \text{ Gauss}$$

Credit: Pearson Prentice Hall, Inc.

IAU Honolulu Division D, Aug (2015)

B

Pulsars' Intrinsic Properties Spin (P), Spin down (Pdot)=> **Magnetic Field (B) and "Age"** $\vec{E} = \frac{d}{dt} \left(\frac{1}{2}I\Omega^2\right) = I \cdot \Omega \cdot \hat{\Omega}$

IAU Honolulu Division D, Aug (2015)

IAU Honolulu Division D, Aug (2015)

The Crab PSR-SNR association

P=33 ms Slows down with time: dP/dt~1.3 ms/century!

> Credit: J. Hester (ASU), CXC, HST, NRAO, NSF, NASA Radio Optical X-rays

SN1054D

Credit: Ron Lussier

$$\dot{E} = -I\Omega\dot{\Omega} = \frac{4\pi^2 I\dot{P}}{P^3}$$

Rotation-powered Pulsar (RPP)

powering a Pulsar Wind Nebula (PWN)=non-thermal synchrotron

The Crab PSR-SNR association

P=33 ms Slows down with time: dP/dt~1.3 ms/century!

> Credit: J. Hester (ASU), CXC, HST, NRAO, NSF, NASA Radio Optical X-rays

SN1054D

Credit: Ron Lussier

$$\dot{E} = -I\Omega\dot{\Omega} = \frac{4\pi^2 I\dot{P}}{P^3}$$

Rotation-powered Pulsar (RPP)

powering a Pulsar Wind Nebula (PWN)=non-thermal synchrotron

B~5 x 10¹² Gauss Spin Down age~1.3 kyr comparable to 961 yr (SN1054)

The Crab PSR-SNR association

P=33 ms Slows down with time: dP/dt~1.3 ms/century!

A "shell-less" or "Naked" SNR!

-unseen cold ejecta/CSM far out?
 -low-energy (<~1e50 ergs) explosion of 8-10 Mo progenitor with early dense CSM interaction (type IIn-P)? Smith+13

B~5 x 10¹² Gauss Spin Down age~1.3 kyr comparable to 961 yr (SN1054) NRAO, NSF, NASA X-rays

SN1054D

(RPP) al synchrotron

 $2\dot{P}$

The many "faces" of Neutron Stars in Supernova Remnants

RPP

Rotation-Powered Pulsar

Weisskopf et al.

Anomalous X-ray Pulsar

AXP (magnetar) High-B Pulsar

Kumar & SSH

HBP

Soft Gamma-ray Repeater

SGR (magnetar) CCO

AXPs (magnetars) and CCOs

are exclusively X-ray objects!

binary

Central Compact Object

Park et al.

Kumar, SSH, Slane & Gotthelf

Zhou et al.

• **Magnetar-like behaviour** from a high-B pulsar (**HBP**) thought to be rotation-powered (Crab-like)

 Magnetar-like behaviour from a high-B pulsar (HBP) thought to be rotation-powered (Crab-like)

HBP J1846-0258 in SNR Kes75

 Magnetar-like behaviour from a high-B pulsar (HBP) thought to be rotation-powered (Crab-like) (*Kumar & SSH 2008; Gavriil et al. 2008*

- Magnetar-like behaviour from a high-B pulsar (HBP) thought to be rotation-powered (Crab-like) (*Kumar & SSH 2008; Gavriil et al. 2008*
 - Discovery of **transient magnetars** (e.g. *Ibrahim et al. 2003*)

 Discovery of radio emission from transient magnetars (*Camilo et al. 2006*)

 Magnetar-like behaviour from a high-B pulsar (HBP) thought to be rotation-powered (Crab-like)

 Discovery of transient magnetars (*Ibrahim et al. 2003*)

• Discovery of radio emission from transient magnetars (*F. Camilo et al.*)

2012 (Swift source), Zhou et al. 2014 (3XMM source near SNR Kes79)

Magnetar-like behaviour from a high-B pulsar (HBP) thought to be rotation-powered (Crab-like)

Discovery of transient magnetars (Ibrahim et al. 2003)

- Discovery of radio emission from transient magnetars (F. Camilo et al.)
- Discovery of "**Iow-B**" (below QED) • magnetars!

How about the CCOs (Central Compact Objects) Anti-magnetars?

How connected to the other neutron star classes? Are they "low" or "high" B-field neutron stars?

e.g. Gotthelf & Halpern'13, '09 (timing); Ho & Heinke'09 (spectroscopy of CasA CCO); Gotthelf+13, Bogdanov+14, Luo+15 (Descendants of CCOs); Ho 2011, Bernal & Page 11 (B growing/submerged); De Luca+08, Pavlov+08 (reviews)

The age and braking index "problem"<=> SNR association

secure associations only with known SNR age Observed properties of NSs									
PSR	P s	$\dot{P} \\ 10^{-11} s \ s^{-1}$	n praking index	$ au_{PSR}$ kyr	SNR	$ au_{SNR-}$ kyr	$ au_{SNR+}$ kyr		
AXP 1E 1841–045 AXP 1E 2259+586 CXOU J171405.7–381031	$11.783 \\ 6.979 \\ 3.825$	$3.930 \\ 4.843e - 2 \\ 6.400$		4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	$0.750 \\ 10.000 \\ 0.350$	2.100 [1] 16.000 [2] 3.150 [3]		
SGR 0526–66 SGR 1627–41 SGRs	$8.054 \\ 2.595$	3.800 1.900		$\begin{array}{c} 3.358 \\ 2.164 \end{array}$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]		
HBP J1119–6127 HBP J1734–3333 HBP J1846–0258 A HBP J1846–0258 B HBP J1846–0258 C	0.408 1.170 0.325 0.326 0.327	0.400 0.228 0.709 0.708 0.711	$\begin{array}{c} 2.684 \pm 0.002 [14] \\ 0.9 \pm 0.2 [15] \\ 2.64 \pm 0.01 [16] \\ 2.68 \pm 0.03 [16] \\ 2.16 \pm 0.13 [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]		
PSR J0537–6910 RPPS PSR B0833–45 (also studied by Ho 2015)	0.016 0.089	0.518 1.250	-1.5 ± 0.1 [18] 1.4 ± 0.2 [19]	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]		
RX J0822.0–4300 1E 1207.4–5209 CCOS CXOU J185238.6+004020	$0.112 \\ 0.424 \\ 0.105$	8.300e - 4 6.600e - 6 8.680e - 7		213.799 1.018e5 1.917e5	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/52) G033.6+00.1 (Kes 79)	3.700 2.000 5.400	5.200 [11] 20.000 [12] 7.500 [13]		

See Poster DDp.2.50 (Rogers & SSH)

SNR ages in SNRcat <u>www.physics.umanitoba.ca/snr/SNRcat</u>

The age and braking index "problem"<=> SNR association

ecure associations only with known SNR age Observed properties of NSs									
PSR	P s	$\stackrel{\dot{P}}{10^{-11}s} s^{-1}$	n braking index	$ au_{PSR}$ kyr	SNR	$_{\rm kyr}^{\tau_{SNR-}}$	$ au_{SNR+}$ kyr		
AXP 1E 1841–045 AXP 1E 2259+586 CXOU J171405.7–381031	$11.783 \\ 6.979 \\ 3.825$	$3.930 \\ 4.843e - 2 \\ 6.400$	n<3	4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	$0.750 \\ 10.000 \\ 0.350$	2.100 [1] 16.000 [2] 3.150 [3]		
SGR 0526–66 SGR 1627–41 SGRs	8.054 2.595	3.800 1.900		$3.358 \\ 2.164$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]		
HBP J1119–6127 HBP J1734–3333 HBPs HBP J1846–0258 A HBP J1846–0258 B HBP J1846–0258 C	$\begin{array}{c} 0.408 \\ 1.170 \\ 0.325 \\ 0.326 \\ 0.327 \end{array}$	0.400 0.228 0.709 0.708 0.711	$\begin{array}{c} 2.684 \pm 0.002 \ [14] \\ 0.9 \pm 0.2 \ [15] \\ 2.64 \pm 0.01 \ [16] \\ 2.68 \pm 0.03 \ [16] \\ 2.16 \pm 0.13 \ [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]		
PSR J0537–6910 RPPS PSR B0833–45 (also studied by Ho 2015)	0.016 0.089	0.518 1.250	-1.5 ± 0.1 [18] 1.4 ± 0.2 [19]	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]		
RX J0822.0–4300 1E 1207.4–5209 CCOS CXOU J185238.6+004020	$0.112 \\ 0.424 \\ 0.105$	8.300e - 4 6.600e - 6 8.680e - 7		213.799 1.018e5 1.917e5	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/52) G033.6+00.1 (Kes 79)	$3.700 \\ 2.000 \\ 5.400$	5.200 [11] 20.000 [12] 7.500 [13]		

$$\dot{\Omega}=-k\Omega^n, \quad k=rac{2m^2\sin^2lpha}{3Ic^3} egin{array}{c} {
m braking\ index} \ n=
u\ddot{
u}/\dot{
u}^2 \end{array}$$

See Poster DDp.2.50 (Rogers & SSH)

SNR ages in SNRcat <u>www.physics.umanitoba.ca/snr/SNRcat</u>

The age and braking index "problem"<=> SNR association

secure associations only with known SNR age Observed properties of NSs									
PSR	P s	${}^{\dot{P}}_{10^{-11}s\ s^{-1}}$	n braking index	$ au_{PSR}$ kyr	SNR	$ au_{SNR-}$ kyr	$ au_{SNR+}$ kyr		
AXP 1E 1841–045 AXP 1E 2259+586 CXOU J171405.7–381031	$11.783 \\ 6.979 \\ 3.825$	$3.930 \\ 4.843e - 2 \\ 6.400$	n<3	4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	$0.750 \\ 10.000 \\ 0.350$	2.100 [1] 16.000 [2] 3.150 [3]		
SGR 0526–66 SGR 1627–41 SGRS	8.054 2.595	3.800 1.900		$3.358 \\ 2.164$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]		
HBP J1119–6127 HBP J1734–3333 HBP J1846–0258 A HBP J1846–0258 B HBP J1846–0258 C	0.408 1.170 0.325 0.326 0.327	0.400 0.228 0.709 0.708 0.711	$\begin{array}{c} 2.684 \pm 0.002 \ [14] \\ 0.9 \pm 0.2 \ [15] \\ 2.64 \pm 0.01 \ [16] \\ 2.68 \pm 0.03 \ [16] \\ 2.16 \pm 0.13 \ [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]		
PSR J0537–6910 RPPs PSR B0833–45 (also studied by Ho 2015)	0.016 0.089	$0.518 \\ 1.250$	$egin{array}{c} -1.5\pm0.1 \ [18] \ 1.4\pm0.2 \ [19] \end{array}$	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]		
RX J0822.0–4300 1E 1207.4–5209 CXOU J185238.6+004020	$0.112 \\ 0.424 \\ 0.105$	8.300e - 4 6.600e - 6 8.680e - 7		213.799 1.018e5 1.917e5	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/52) G033.6+00.1 (Kes 79)	$3.700 \\ 2.000 \\ 5.400$	5.200 [11] 20.000 [12] 7.500 [13]		

$$\dot{\Omega} = -k\Omega^n, \quad k = rac{2m^2 \sin^2 \alpha}{3Ic^3}$$
 braking index $n = \nu \ddot{\nu} / \dot{\nu}^2$

See Poster DDp.2.50 (Rogers & SSH)

SNR ages in SNRcat <u>www.physics.umanitoba.ca/snr/SNRcat</u> **Standard Assumption (B, t):** B is constant P₀<<P, magnetic dipole (n=3)

The age and braking index "problem"<=> SNR association

secure associations only with known SNR age Observed properties of NSs									
PSR	P s	${}^{\dot{P}}_{10^{-11}s\ s^{-1}}$	n braking index	$ au_{PSR}$ kyr	SNR	$ au_{SNR-}$ kyr	$_{\rm kyr}^{\tau_{SNR+}}$		
AXP 1E 1841–045 AXP 1E 2259+586 CXOU J171405.7–381031	$11.783 \\ 6.979 \\ 3.825$	$3.930 \\ 4.843e - 2 \\ 6.400$	n<3	4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	$0.750 \\ 10.000 \\ 0.350$	2.100 [1] 16.000 [2] 3.150 [3]		
SGR 0526–66 SGR 1627–41 SGRs	$8.054 \\ 2.595$	3.800 1.900		$3.358 \\ 2.164$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]		
HBP J1119–6127 HBP J1734–3333 HBP J1846–0258 A HBP J1846–0258 B HBP J1846–0258 C	0.408 1.170 0.325 0.326 0.327	0.400 0.228 0.709 0.708 0.711	$\begin{array}{c} 2.684 \pm 0.002 \ [14] \\ 0.9 \pm 0.2 \ [15] \\ 2.64 \pm 0.01 \ [16] \\ 2.68 \pm 0.03 \ [16] \\ 2.16 \pm 0.13 \ [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]		
PSR J0537–6910 RPPs PSR B0833–45 (also studied by Ho 2015)	0.016 0.089	$0.518 \\ 1.250$	$egin{array}{c} -1.5\pm0.1 & [18] \ 1.4\pm0.2 & [19] \end{array}$	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]		
RX J0822.0–4300 1E 1207.4–5209 CXOU J185238.6+004020	$0.112 \\ 0.424 \\ 0.105$	8.300e - 4 6.600e - 6 8.680e - 7		213.799 1.018e5 1.917e5	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/52) G033.6+00.1 (Kes 79)	$3.700 \\ 2.000 \\ 5.400$	5.200 [11] 20.000 [12] 7.500 [13]		

$$\dot{\Omega}=-k\Omega^n, \quad k=rac{2m^2\sin^2lpha}{3Ic^3} egin{array}{c} {
m braking index} \ n=
u\ddot{
u}/\dot{
u}^2 \end{array}$$

See Poster DDp.2.50 (Rogers & SSH)

SNR ages in SNRcat <u>www.physics.umanitoba.ca/snr/SNRcat</u> **Standard Assumption (B, t):** B is constant P₀<<P, magnetic dipole (n=3)

The age and braking index "problem"<=> SNR association

secure associations only with know	own SNR age Observed pro	$ au = \frac{P}{2\dot{P}}$ X-ray spec	troscopy/dynamics				
PSR P s	\dot{P} n $10^{-11}s \ s^{-1}$ braking index	kyr SINR	$ au_{SNR-} au_{SNR+}$ kyr kyr				
AXP 1E 1841–045 AXPs 11.783 AXP 1E 2259+586 6.979 CXOU J171405.7–381031 3.825	3.930 4.843 <i>e</i> - 2 6.400	$ \begin{array}{c cccc} 4.750 & G27.4 + 0.0 \ ({\rm Kes} \ 73) \\ 228.317 & G109.1 - 01.0 \ ({\rm CTB} \ 109) \\ 0.947 & G348.7 + 00.3 \end{array} $	0.750 2.100 [1] 10.000 16.000 [2] 0.350 3.150 [3]				
SGR 0526–66 SGR 1627–41 SGR 8.054 2.595	3.800 1.900	3.358 N49 2.164 G337.3–0.1	$\begin{array}{ccc} - & 4.800 \ [4] \\ - & 5.000 \ [5] \end{array}$				
HBP J1119-6127 0.408 HBP J1734-3333 HBPS 1.170 HBP J1846-0258 A 0.325 HBP J1846-0258 B 0.326 HBP J1846-0258 C 0.327	$\begin{array}{cccc} 0.400 & 2.684 \pm 0.002 \ [1] \\ 0.228 & 0.9 \pm 0.2 \ [15] \\ 0.709 & 2.64 \pm 0.01 \ [16] \\ 0.708 & 2.68 \pm 0.03 \ [16] \\ 0.711 & 2.16 \pm 0.13 \ [17] \end{array}$	[] 1.616 G292.2–0.5 8.131 G354.8–0.8 0.726 G029.7–0.3 (Kes 75) 0.729 0.728	$\begin{array}{cccc} 4.200 & 7.100 & [6] \\ 1.300 & - & [7] \\ 0.900 & 4.300 & [8] \end{array}$				
PSR J0537-6910 RPPS 0.016 PSR B0833-45 (also studied by Ho 2015) 0.089		4.925 N157B 11.319 G263.9–03.3 (Vela)	1.000 5.000 [9] 5.400 16.000 [10]				
RX J0822.0-4300 CCOS 0.112 1E 1207.4-5209 CCOS 0.424 CXOU J185238.6+004020 0.105	$8.300e - 4 \\ 6.600e - 6 \\ 8.680e - 7$	$\begin{array}{c ccccc} 213.799 & G260.4-3.4 \ (Puppis \ A) \\ 1.018e5 & G296.5 \ +10.0 \ (PKS \ 1209-51) \\ 1.917e5 & G033.6+00.1 \ (Kes \ 79) \end{array}$	3.700 5.200 [11] 2.000 20.000 [12] 5.400 7.500 [13]				
	$\dot{\Omega} = -k\Omega^n, k =$	$\frac{2m^2 \sin^2 \alpha}{3Ic^3} \begin{array}{l} \text{braking index} \\ n = \nu \ddot{\nu} / \dot{\nu}^2 \end{array}$					
See Poster DDp.2.50 (<i>Rogers & SSH</i>) Standard Assumption (B, t):							
SNR ages in SN www.physics.umanitoba.	JRcat <u>ca/snr/SNRcat</u>	B is constan Po< <p, dip<="" magnetic="" td=""><td>t ole (n=3)</td></p,>	t ole (n=3)				

The age and braking index "problem"<=> SNR association

secure associations only with	known SNR ag	e Observed pro	$\tau = \frac{P}{2\dot{P}}$	X-ray spect	roscopy/	dynamics
PSR P s	$\dot{P}_{10^{-11}s\ s^{-1}}$	n braking index	PSR kyr	SINR	$ au_{SNR-}$ kyr	$ au_{SNR}$ kyr
AXP 1E 1841–045 AXPs 11. AXP 1E 2259+586 6.9 CXOU J171405.7–381031 3.8	$\begin{array}{rrrr} 783 & 3.930 \\ 79 & 4.843e-2 \\ 25 & 6.400 \end{array}$	n<3	4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	0.750 10.000 0.350	2.100 [1] 16.000 [2] 3.150 [3]
SGR 0526–66 SGR 1627–41 SGRS 2.5	54 3.800 95 1.900		$3.358 \\ 2.164$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]
HBP J1119-6127 HBP S 0.4 HBP J1734-3333 HBP S 1.1 HBP J1846-0258 A 0.3 HBP J1846-0258 B 0.3 HBP J1846-0258 C 0.3	08 0.400 70 0.228 25 0.709 26 0.708 27 0.711	$\begin{array}{c} 2.684 \pm 0.002 \ [14] \\ 0.9 \pm 0.2 \ [15] \\ 2.64 \pm 0.01 \ [16] \\ 2.68 \pm 0.03 \ [16] \\ 2.16 \pm 0.13 \ [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]
PSR J0537-6910 RPPS 0.0 PSR B0833-45 (also studied by Ho 2015)	16 0.518 89 1.250	-1.5 ± 0.1 [18] 1.4 ± 0.2 [19]	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]
RX J0822.0–4300 1E 1207.4–5209 CCOS 0.1 CXOU J185238.6+004020 0.1	$\begin{array}{rrrr} 12 & 8.300e-4 \\ 24 & 6.600e-6 \\ 05 & 8.680e-7 \end{array}$		$213.799 \\ 1.018e5 \\ 1.917e5$	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/ G033.6+00.1 (Kes 79)	3.700 (52) 2.000 5.400	5.200 [11] 20.000 [12] 7.500 [13]
	$\dot{\Omega} = -$	$k\Omega^n, k =$	$\frac{2m^2\sin^2}{2L^2}$	$\frac{1^2 \alpha}{n - \nu \ddot{\mu} / \dot{\mu}^2}$		
See Poster DDp.2.50	(Rogers & S	SSH)	31c ³ Standa	ard Assumptio	on (B, t)	:
SNR ages in www.physics.umanitok	SNRcat ba.ca/snr/SN	<u>NRcat</u>	°₀<<₽,	B is constant magnetic dipo	ble (n=3	

The age and braking index "problem"<=> SNR association

secure associations only	with kno	wn SNR age	Observed prope	erties of NS	X-ray spect	troscopy/o	dynamics
PSR	P s	\dot{P} $10^{-11}s \ s^{-1}$	n oraking index	$ au_{PSR}$ kyr	SNR	$ au_{SNR-}$ kyr	$\tau_{SNR+} \\ \rm kyr$
AXP 1E 1841–045 AXP 1E 2259+586 CXOU J171405.7–381031	$11.783 \\ 6.979 \\ 3.825$	$3.930 \\ 4.843e - 2 \\ 6.400$		4.750 228.317 0.947	G27.4+0.0 (Kes 73) G109.1-01.0 (CTB 109) G348.7+00.3	$\begin{array}{c} 0.750 \\ 10.000 \\ 0.350 \end{array}$	2.100 [1] 16.000 [2] 3.150 [3]
SGR 0526–66 SGR 1627–41 SGRs	$8.054 \\ 2.595$	3.800 1.900		$3.358 \\ 2.164$	N49 G337.3–0.1	_	4.800 [4] 5.000 [5]
HBP J1119–6127 HBP J1734–3333 HBPs HBP J1846–0258 A HBP J1846–0258 B HBP J1846–0258 C	$\begin{array}{c} 0.408 \\ 1.170 \\ 0.325 \\ 0.326 \\ 0.327 \end{array}$	0.400 0.228 0.709 0.708 0.711	$\begin{array}{c} 2.684 \pm 0.002 [14] \\ 0.9 \pm 0.2 [15] \\ 2.64 \pm 0.01 [16] \\ 2.68 \pm 0.03 [16] \\ 2.16 \pm 0.13 [17] \end{array}$	1.616 8.131 0.726 0.729 0.728	G292.2–0.5 G354.8–0.8 G029.7–0.3 (Kes 75)	4.200 1.300 0.900	7.100 [6] - [7] 4.300 [8]
PSR J0537–6910 PSR B0833–45	0.016 0.089	$0.518 \\ 1.250$	-1.5 ± 0.1 [18] 1.4 ± 0.2 [19]	$4.925 \\ 11.319$	N157B G263.9–03.3 (Vela)	$1.000 \\ 5.400$	5.000 [9] 16.000 [10]
RX J0822.0–4300 1E 1207.4–5209 CCOS CXOU J185238.6+004020	$0.112 \\ 0.424 \\ 0.105$	8.300e - 4 6.600e - 6 8.680e - 7		213.799 1.018e5 1.917e5	G260.4–3.4 (Puppis A) G296.5 +10.0 (PKS 1209–51/ G033.6+00.1 (Kes 79)	3.700 (52) 2.000 5.400	5.200 [11] 20.000 [12] 7.500 [13]

Rogers & SSH, submitted

How is the SNR age determined?

SNR ages in SNRcat www.physics.umanitoba.ca/snr/SNRcat

See Poster DDp.2.50 (*Rogers & SSH*)

Probing SN properties (energetics, density, <u>SNR age</u>) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

$$T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$$

• (also) Proper motion measurements (Chandra)

Probing SN properties (energetics, density, <u>SNR age</u>) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuu

$$T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$$

(Caveat: T_e is not necessarily the same as T_p)

Probing SN properties (energetics, density, <u>SNR age</u>) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

 $T_s \ (K) \ \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$

Probing SN properties (SNR age, also ambient density, Explosion energy) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

 $T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$

- (also) Proper motion measurements (Chandra)
- **Density** from emission measure (EM):

$$EM = \int n_H n_e dV$$

Probing SN properties (SNR age, also ambient density, Explosion energy) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

 $T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$

- (also) Proper motion measurements (Chandra)
- **Density** from emission measure (EM):

$$EM = \int n_H n_e dV$$

• Assuming a Sedov-Taylor phase solution*:

=> Estimate SNR age (t) and Explosion Energy (E)

$$R_{\rm s} = \left(\xi \frac{Et^2}{\rho_0}\right)^{1/5},$$
$$V_{\rm s} = \frac{dR_{\rm s}}{dt} = \frac{2}{5} \left(\xi \frac{E}{\rho_0}\right)^{1/5} t^{-3/5} = \frac{2}{5} \frac{R_{\rm s}}{t}$$

Probing SN properties (SNR age, also ambient density, Explosion energy) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

 $T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$

- (also) Proper motion measurements (Chandra)
- **Density** from emission measure (EM):

$$EM = \int n_H n_e dV$$

• Assuming a Sedov-Taylor phase solution*:

=> Estimate SNR age (t) and Explosion Energy (E)

*Ideally: modelling the hydrodynamical, ionization state, and radiative evolution into a CSM medium (*e.g. Patnaude+15; Gelfand+09, Reynolds & Chevalier'84*)

$$R_{\rm s} = \left(\xi \frac{Et^2}{\rho_0}\right)^{1/5},$$
$$V_{\rm s} = \frac{dR_{\rm s}}{dt} = \frac{2}{5} \left(\xi \frac{E}{\rho_0}\right)^{1/5} t^{-3/5} = \frac{2}{5} \frac{R_{\rm s}}{t}$$

Probing SN properties (SNR age, also ambient density, Explosion energy) through X-ray spectroscopy (SNR)

• **Temperature** (=>thermal continuum) ~ V_s^2

 $T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$

- (also) Proper motion measurements (Chandra)
- **Density** from emission measure (EM):

$$EM = \int n_H n_e dV$$

• Assuming a Sedov-Taylor phase solution*:

=> Estimate SNR age (t) and Explosion Energy (E)

*Ideally: modelling the hydrodynamical, ionization state, and radiative evolution into a CSM medium (*e.g. Patnaude+15; Gelfand+09, Reynolds & Chevalier'84*)

 For a low-density and/or young SNR: Ionization timescale: n_e t (another handle on "age", t)

$$R_{\rm s} = \left(\xi \frac{Et^2}{\rho_0}\right)^{1/5},$$
$$V_{\rm s} = \frac{dR_{\rm s}}{dt} = \frac{2}{5} \left(\xi \frac{E}{\rho_0}\right)^{1/5} t^{-3/5} = \frac{2}{5} \frac{R_{\rm s}}{t}$$

$$\frac{dB}{dt} = -aB(t)^{1+\alpha}$$
B-decay
(e.g. Colpi+00,
D'Allosso+12)

Rogers & SSH (submitted) Rogers & SSH (in prep)

See Poster DDp.2.50 (Rogers & SSH)

B "submerged" in CCOs? a way around the age and B measurement?

CCO P=105 ms B=3.1e10 Gauss (Seward et al; Gotthelf et al.)

transient low-B magnetar

CCO

SNR age: 5.4-7.5 kyr (see new study: *Zhou et al.* **Poster DDp.2.37**) **CCO** char. age: 1.9E5 kyr!

Kes 79 Zhou et al. 2014

B "submerged" in CCOs? a way around the age and B measurement?

CCO P=105 ms B=3.1e10 Gauss (Seward et al; Gotthelf et al.)

transient low-B magnetar

Zhou et al. 2014

SNR age: 5.4-7.5 kyr (see new study: *Zhou et al.* Poster DDp.2.37) CCO char. age: 1.9E5 kyr! Highly modulated pulsed signal=> non-uniform surface temperature in a "CCO" (dipole: 3.1 x 10¹⁰ G) requires a much higher internal B. Submerged due to accretion?

(Gotthelf+13, Bogdanov'14; Bernal+10, Ho'11, 15.....)

B "submerged" in CCOs?

a way around the age and B measurement?

transient low-B magnetar

Zhou et al. 2014

SNR age: 5.4-7.5 kyr (see new study: *Zhou et al.* Poster DDp.2.37) CCO char. age: 1.9E5 kyr! Highly modulated pulsed signal=> non-uniform surface temperature in a "CCO" (dipole: 3.1 x 10¹⁰ G) requires a much higher internal B. Submerged due to accretion?

(Gotthelf+13, Bogdanov'14; Bernal+10, Ho'11, 15.....)

B "submerged" in CCOs?

a way around the age and B measurement?

Hidden strong internal B?

transient low-B magnetar

hou et al. 2014.

SNR age: 5.4-7.5 kyr (see new study: *Zhou et al.* Poster DDp.2.37) CCO char. age: 1.9E5 kyr! Highly modulated pulsed signal=> non-uniform surface temperature in a "CCO" (dipole: 3.1 x 10¹⁰ G) requires a much higher internal B. Submerged due to accretion?

(Gotthelf+13, Bogdanov'14; Bernal+10, Ho'11, 15.....)

Conclusion (part I):

SNR ages are better indicators for the "true" ages: The zoo can be attributed (at least partly) to B-evolution **B-evolution (growth) still under hot debate!**

Conclusion (part I):

SNR ages are better indicators for the "true" ages: The zoo can be attributed (at least partly) to B-evolution **B-evolution (growth) still under hot debate!**

On their **Progenitors** and environment (for the highly magnetized neutron stars)

S. Safi-Harb

II. On their Progenitors (Linking SNRs to their SN progenitors in X-rays)

- la vs core-collapse, SN typing:
 - SNR morphology (e.g. Lopez+2009, 2011)

II. On their Progenitors (Linking SNRs to their SN progenitors in X-rays)

- la vs core-collapse, SN typing:
 - SNR morphology (e.g. Lopez+2009, 2011)
 - Fe-K line diagnosis (Yamaguchi+14, Patnaude+15)

II. On their Progenitors (Linking SNRs to their SN progenitors in X-rays)

- Ia vs core-collapse, SN typing:
 - SNR morphology (e.g. Lopez+
 - Fe-K line diagnosis (Yamaguchi+14, Patnaude+15)

IAU Honolulu Division D, Aug (2015)

S. Safi-Harb

II. On their Progenitors (Linking SNRs to their SN progenitors through X-ray spectroscopy)

- la vs core-collapse, SN typing:
 - SNR morphology (e.g. Lopez+2011)
 - Fe-K line centroids (Yamaguchi+14, Patnaude+15)

II. On their Progenitors (Linking SNRs to their SN progenitors through X-ray spectroscopy)

- la vs core-collapse, SN typing:
 - SNR morphology (e.g. Lopez+2011)
 - Fe-K line centroids (Yamaguchi+14, Patnaude+15)

- X-ray spectroscopy
 - vs nucleosynthesis models
 - Nomoto et al., Woosley & Weaver et al., Thielemann et al. (and others)

IAU Honolulu Division D, Aug (2015)

II. On their Progenitors

(Linking SNRs to their SN progenitors through X-ray spectroscopy)

- la vs core-collapse, S
 - SNR morphology (e
 - Fe-K line centroids (Yamaguchi+14, Patnaude+15)

• X-ray spectroscopy

e.g. using Woosley & Weaver 1995 yields

- vs nucleosynthesis models
- Nomoto et al., Woosley & Weaver et al., Thielemann et al. (and others)

IAU Honolulu Division D, Aug (2015)

S. Safi-Harb

Magnetars B~1014-1015 Gauss

High-energy sources (AXPs, SGRs)

burst, P~2-12 s

The Inventing Machines

Computer Program

Evolve New Circuits

uicide and Biology

Betrays Itself

SATELLITE-GUIDED BOMBS: GPS and the Next War

MAGNETAR

· $L_x > Edot$ (spin-down energy)

- can NOT be powered by rotation
 - Decay of their super-strong B (
- B > B_{QED} (<u>4.3e13 Gauss</u>)
 - although we now know of 3 "low-B" magnetars

S. Safi-Harb

- Proton Cyclotron Features?
- Big/Debated questions:
 - Link to other classes of neutron stars (part I)
 - What is the origin of their super-strong B field?
 - On their progenitors

IAU Honolulu Division D, Aug (2015)

$B = \sqrt{\frac{3c^3}{8\pi^2}} \frac{I}{R^6 \sin^2 \alpha} P \dot{P} = 3.2 \cdot 10^{19} \sqrt{P \dot{P}} \text{ Gauss}$

Magnetar Progenitors, origin of B

Two "competing"/popular models

Proto-Neutron-Star

dynamo post birth

super-energetic

 (>>10⁵¹ ergs) SNRs
 see e.g. Vink 2008

Fossil-field hypothesis magnetic flux conservation

Very massive (20-45 solar masses) progenitors (Ferrario & Wickramasinghe 2008)

Magnetar Progenitors, origin of B

Two "competing"/popular models

Proto-Neutron-Star

dynamo post birth

super-energetic
 (>>10⁵¹ ergs) SNRs
 see e.g. Vink 2008

Fossil-field hypothesis magnetic flux conservation

(Ferrario & Wickramasinghe 2008)

Multi-wavelength Observations: <= HI bubble around an AXP 20-45 solar-mass progenitors=>

- SGR 1806-20 and magnetar CXO U J164710.2-455216 associated with very massive star clusters
- Wolf-Rayet progenitor inferred for the HBP J1846-0258/Kes 75
- But..~17 solar-mass progenitor inferred for SGR 1900+14

Magnetar Progenitors, origin of B

Two "competing"/popular models

What can we learn from X-ray spectroscopy of associated SNRs (environment)?

Multi-wavelength Observations: <= HI bubble around an AXP 20-45 solar-mass progenitors=>

- SGR 1806-20 and magnetar CXO U J164710.2-455216 associated with very massive star clusters
- Wolf-Rayet progenitor inferred for the HBP J1846-0258/Kes 75
- But..~17 solar-mass progenitor inferred for SGR 1900+14

SN properties:

E (1e51 ergs) n₀ (cm⁻³)

Kes75

Gelfand et al. 2014

 Makenesses

 Data

 Data

 Data

 Data

 Data

 Data

0.7-1.8

0.2

HBP J1119-6127

0.02

SN properties:

E (1e51 ergs) n₀ (cm⁻³)

Gelfand et al. 2014

Kes75

Park et al. 2012

N49

<u>2</u> Kumar, SSH & Gonzalez 2012 G292.2-0.5

Progenitors of HBPs/Magnetars

Progenitors of HBPs/Magnetars

Summary for SN Progenitors & Energetics

Highly magnetized neutron stars (HBPs and magnetars):

While the SNR explosion energies appear to be "typical" (~e50-le5l ergs), the progenitors appear to be very massive (or expanding into wind bubbles/very low-density medium)

*Supports the Fossil Field Model for highly magnetized NSs

Summary for SN Progenitors & Energetics

Highly magnetized neutron stars (HBPs and magnetars):

While the SNR explosion energies appear to be "typical" (~e50-le5l ergs), the progenitors appear to be very massive (or expanding into wind bubbles/very low-density medium)

*Supports the Fossil Field Model for highly magnetized NSs

If true => such massive stars do **not** necessarily all form black holes! (cf. *A. Heger et al. 2003; Smith 2014)* Q: Is SS433/W50 the only Black Hole (?)-SNR system in our Galaxy ?

Summary for SN Progenitors & Energetics

Highly magnetized neutron stars (HBPs and magnetars):

While the SNR explosion energies appear to be "typical" (~e50-le5l ergs), the progenitors appear to be very massive (or expanding into wind bubbles/very low-density medium)

*Supports the Fossil Field Model for highly magnetized NSs

If true => such massive stars do **not** necessarily all form black holes! (cf. *A. Heger et al. 2003; Smith 2014)* Q: Is SS433/W50 the only Black Hole (?)-SNR system in our Galaxy ?

Limitations:

- a) CCD-type spectra
- b) Different Nucleosynthesis models and yields
- c) Energetics neglects gravitational radiation
- d) Small Sample
- e) (PSR ages not to be trusted) but SNR ages and shock velocities also need to be accurately determined!

ASTRO-H will provide a leap in high-resolution X-ray spectroscopy:

Progenitors of the PSRs zoo, and other SNRs (SXS)
Accurate SNR age and shock velocity measurements (SXS)
search for thermal emission in synchrotron dominated SNRs (e.g. shell-less PWNe)
direct measurement/origin of B (SXS/SXI/HXI, broadband): cyclotron features

See "AstroH White papers" on SNRs and compact objects (arXiv:1412.1165/66/69/75)

$$\sigma_{\rm E} = \left(\frac{E_0}{c}\right) \sqrt{\left(\frac{kT_{\rm i}}{m_{\rm i}}\right)}.$$

Thermal broadening=> lons temperature (line widths). Line Centroids=> Doppler shift

ASTRO-H will provide a leap in high-resolution X-ray spectroscopy:

Progenitors of the PSRs zoo, and other SNRs (SXS)
Accurate SNR age and shock velocity measurements (SXS)
search for thermal emission in synchrotron dominated SNRs (e.g. shell-less PWNe)
direct measurement/origin of B (SXS/SXI/HXI, broadband): cyclotron features

See "AstroH White papers" on SNRs and compact objects (arXiv:1412.1165/66/69/75)

Shell-less/Naked SNRs (i.e. PWN) and synchrotron dominated SNRs=> search for (missing) SNR thermal plasma=>progenitors

ASTRO-H will provide a leap in high-resolution X-ray spectroscopy:

Progenitors of the PSRs zoo, and other SNRs (SXS)
Accurate SNR age and shock velocity measurements (SXS)
search for thermal emission in synchrotron dominated SNRs (e.g. shell-less PWNe)
direct measurement/origin of B (SXS/SXI/HXI, broadband): cyclotron features

See "AstroH White papers" on SNRs and compact objects (arXiv:1412.1165/66/69/75)

Summary:

SNRs offer laboratories to study the physics of exotic objects

-Age: magnetic field evolution linking the different faces of neutron stars -SN progenitor/Energetics studies: very (?) massive progenitors for magnetars/HBPs

The future is promising for upcoming high-resolution X-ray spectroscopy (soon, <u>ASTRO-H</u>: <7eV resolution, better sensitivity in Fe-K, broadband 0.5-600 keV; Late 2020's: <u>Athena</u> in synergy with other planned multi-wavelength missions)

Thank you!

(also with thanks for the SNR group members and collaborators)

Check out our on-line and regularly updated high-energy (X+γ) SNR catalogue (SNRcat): <u>http://www.physics.umanitoba.ca/snr/SNRcat</u>

Comments, corrections, input ... are welcome!